On maximal sublattices of finite lattices

نویسنده

  • J. Schmid
چکیده

We discuss the possible structures for and mutual relationships between a finite distributive lattice L, a maximal sublattice M of L and the corresponding ‘remainder’ R = L\M with the aid of Birkhoff duality, and contrast the results with the analogous situations for a general finite lattice L. @ 1999 Elsevier Science B.V. All rights reserved

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal Sublattices of Nite Distributive Lattices

Algebraic properties of lattices of quotients of nite posets are considered. Using the known duality between the category of all nite posets together with all order-preserving maps and the category of all nite distributive (0; 1)-lattices together with all (0; 1)-lattice ho-momorphisms, algebraic and arithmetic properties of maximal proper sublattices and, in particular, Frattini sublattices of...

متن کامل

Maximal Sublattices and Frattini Sublattices of Bounded Lattices

We will address these questions in order, and provide good partial answers, especially for nite lattices which are bounded homomorphic images of a free lattice. Recall that a nite lattice is bounded if and only if it can be obtained from the one element lattice by a sequence of applications of Alan Day's doubling construction for intervals. In particular, nite distributive lattices are bounded....

متن کامل

A note on supermodular sublattices in finite relatively complemented lattices

A sublattice in a lattice is called supermodular if, for every two elements, one of which belongs to the sublattice, at least one of their meet and join also belongs to the sublattice. In this note, we describe supermodular sublattices in products of relatively complemented lattices.

متن کامل

Maximal Sublattices of Finite Distributive Lattices. III: A Conjecture from the 1984 Banff Conference on Graphs and Order

Let L be a finite distributive lattice. Let Sub0(L) be the lattice {S | S is a sublattice of L} ∪ {∅} and let ∗[Sub0(L)] be the length of the shortest maximal chain in Sub0(L). It is proved that if K and L are non-trivial finite distributive lattices, then ∗[Sub0(K × L)] = ∗[Sub0(K)] + ∗[Sub0(L)]. A conjecture from the 1984 Banff Conference on Graphs and Order is thus proved. 1 Motivation Let L...

متن کامل

On Lattices of Maximal Index Two

The maximal index of a Euclidean lattice L of dimension n is the maximal index of the sublattices of L spanned by n independent minimal vectors of L. In this paper, we prove that a perfect lattice of maximal index two which is not provided by a cross-section has dimension at most 5.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 199  شماره 

صفحات  -

تاریخ انتشار 1999